backНазад к 1/2015
Technical Issues
1/2015 pp. 54-67

Właściwości mechaniczne tworzywa pet - przegląd literatury


pdf Полный текст в pdf

Аннотация

The article describes the influence of thee microstructure and environment conditions on the mechanical properties of PET material. From the microscopic point of view, mechanical and thermal properties of PET material have the biggest influence on orientation and crystallization processes of material. From the macroscopic point of view mechanical properties can be described by parameters derived from stress-strain mechanical answers (e.g. from viscosity testing and/or from uniaxial and biaxial stretching tests). Macroscopic mechanical properties average the material microstructure answer to the external force. The article describes the mechanical properties of PET taking into account the influence of temperature, strain, strain rate, molecular weight and method of deformation. The discussion was prepared on the basis of the collected literature data.

Ключевые слова

SBM process, PET material, mechanical properties, uniaxial stretching, biaxial stretching

Библиографический список

1. Awaja. F, Pavel. D., Recycling of PET, European Polymer Journal, 2005, 41, pp. 1453–1477.

2. Bashir, Z., Al-Aloush, I., Al-Raqibah, I., Ibrahim, M., Evaluation of Three Methods for the Measurement of Crystallinity of PET Resins, Preforms, and Bottles, Polymer Engineering and Science, 2000, 40, pp. 2442–2455.

3. Menary, G.H., Tan, C.W., Harkin-Jones, E.M.A., Armstrong, C.G., Martin, P.J., Biaxial Deformation and Experimental Study of PET at Conditions Applicable to Stretch Blow Molding, Polymer Engineering and Science, 2012, 52, pp. 671–688.

4. Fann, D.M., Huang, S.K., Lee, J.Y., DSC Studies on the Crystallization Characteristics of Poly(Ethylene Terephthalate) for Blow Molding Applications, Polymer Engineering and Science, 1998, 38, pp. 265–273.

5. Oldak, E., Doktorat: Efekty masy cząsteczkowej w modelowaniu procesów formowania włókien ze stopionego polimeru, PAN, Warszawa, 2005.

6. Torres, N., Robin, J.J., Boutevin, B., Study of thermal and mechanical properties of virgin and recycled poly(ethylene terephthalate) before and after injection molding, European Polymer Journal, 2000, 36, pp. 2075-2080.

7. Łużny, W., Wstęp do nauki o polimerach. AGH, Uczelniane wydawnictwa naukowo-dydaktyczne, Kraków, 1999.

8. Dong, W, Zhao, J., Li, C., Guo, M., Zhao, D., Fan, Q., Study of the amorphous phase in semicrystalline poIy(ethyIene terephthalate) via dynamie mechanical thermal analysis, Polymer Bulletin, 2002, 49, pp. 197-203.

9. Martin, P.J., Tan, C.W., Tshai, K.Y., McCool, R., Menary, G., Armstrong, C.G., Biaxial characterisation of materials for thermoforming and blow molding, Plastics, rubber and composites, 2005, 34, pp. 276-282.

10. Dobrzański, L.A. Wprowadzenie do nauki o materiałach, Wydawnictwo Politechniki Śląskiej, Gliwice, 2007.

11. Wyatt, O.H., Dew-Hughes, D., Wprowadzenie do inżynierii materiałowej. Metale, ceramika i tworzywa sztuczne, WNT, Warszawa, 1978.

12. Hu, Y.S., Hiltner, A., Baer, E., Improving Oxygen Barrier Properties of Poly(ethylene terephthalate) by Incorporating Isophthalate. II. Effect of Crystallization, Journal of Applied Polymer Science, 2005, 98, pp. 1629–1642.

13. Boyd, T.J., Doktorat: Transient Crystallization of Poly(ethylene terephthalate) Bottles, The University of Toledo, Toledo, 2004.

14. Mahendrasingam, A., Blundell, D.J., Martin, C., Fuller, W., MacKerron, D.H., Harvie, J.L., Oldman, R.J., Riekel, C., Influence of temperature and chain orientation on the crystallization of poly(ethylene terephthalate) during fast drawing, Polymer, 2000, 41, pp. 7803–7814.

15. Tharmapuram, S.R., Jabarin, S.A., Processing Characteristics of PET/PEN Blends, Part 3: Injection Molding and Free Blow Studie, Advances in Polymer Technology, 2003, 22, pp. 155–167.

16. Shen, Y., Harkin-Jones, E., Hornsby, P., McNally, Abu-Zurayk, R. The effect of temperature and strain rate on the deformation behaviour, structure development and properties of biaxially stretched PET-clay nanocomposites, Composites Science and Technology, 2011, 71, pp. 758-764.

17. Jastrzębski, Z.D., Własności tworzyw konstrukcyjnych, WNT, Warszawa, 1962.

18. Chevalier, L., Marco, Y., Identification of a strain induced crystallisation model for PET under uni- and bi-axial loading: Influence of temperature dispersion, Mechanics of Materials, 2007, 39, pp. 596–609.

19. Nitta, K., Yamana, M., Rheology, 2012, Chapter 5: Poisson’s Ratio and Mechanical Nonlinearity Under Tensile Deformation in Crystalline Polymers, http://cdn.intechopen.com/pdfs/30970/InTech-Poisson_s_ratio_and_mechanical_nonlinearity_under_tensile_deformation_in_crystalline_polymers.pdf (access 5.01.2015).

20. Zawistowski, H., Podstawy teorii kształtowania właściwości wyrobów w procesie wtryskiwania tworzyw termoplastycznych, Mechanik, 2008, 4, pp. 276 - 280.

21. Karayannidis, G.P., Sideridou, I.D., Zamboulis, D.N., Bikiaris, D.N., Sakalis, A.J., Thermal Behavior and Tensile Properties of Poly(ethylene terephthalate-co-ethylene isophthalate), Journal of Applied Polymer Science, 2000, 78, pp. 200–207.

22. Cosson, B., Chevalier, L., Régnier, G., Simulation of the stretch blow moulding process: from the modelling of the microstructure evolution to the end-use elastic properties of polyethylene terephthalate bottles, Int. J. Mater. Form., 2012, 5, pp. 39–53.

23. TES. sp. z.o.o. dane własne firmy, http://www.tes.com.pl/ (dostęp 5.01.2015).

24. Rastogi, R., Vellinga, W.P., Rastogi, S., Schick, C., Meijer, H.E.H., TheThree-Phase Structure and Mechanical Properties of Poly(ethylene terephthalate), Inc. J. Polym. Sci. Part B: Polym Phys., 2004, 42, pp. 2092–2106.

25. Adams, A.M., Buckley, C.P., Jones, D.P., Biaxial hot drawing of poly(ethylene terephthalate): measurements and modelling of strain-stiffening, Polymer, 2000, 41, pp. 771–786.

26. Salem, D.R., Development of crystalline order during hot-drawing of poly(ethylene terephthalate) film: influence of strain rate, Polymer, 1992, 33, pp. 3182-3188.

27. Ward, I.M., Mechaniczne własności polimerów jako tworzyw konstrukcyjnych, PWN, Warszawa, 1975.

28. Schmidt, F.M., Agassant, J.F., Bellet, M., Experimental Study and Numerical Simulation of the Injection Stretch/Blow Molding Process, Polymer Engineering and Science, 1998, 38, pp. 1399–1412.