1/2016 pp. 8-13
Charakterystyka powierzchni materiałów nanostrukturalnych z użyciem powierzchniowo wzmocnionej spektroskopii ramana
Полный текст в pdf
Аннотация
Nowadays, surface-enhanced Raman spectroscopy (SERS) is being considered as a rapid and powerful vibrational spectroscopy technique for chemical analysis of materials. The Very high incensement in the intensities of the Raman signal allows for application of that method for chemical analysis of nanostructured surfaces covered with suitable enhancing substrates. For SERS measurements, the substrate plays an essential role because it provides a localized metal surface plasmon resonance enhancement of analyte molecules. Moreover, the use of SERS has a great potential to overcome the Raman spectroscopy weaknesses connected with intensity problems and, therefore, can be applied to the field of heterogeneous catalysts. This article reviews the application of nanoparticles substrates as a ground for SERS enhancement. The article also focuses on the recent progress in SERS characterization of catalytic materials. Recent developments in the field of catalytic material characterization for selected tested molecules allow for performing valuable and reproducible SERS experiments on working catalysts in the reaction environment.
Ключевые словаsurface-enhanced Raman spectroscopy, nanostructured metal, SERS, surface spectroscopy, catalysis, nanomaterials
Библиографический список1. Abdelsalam, M.E., Mahajan, S., Bartlett, P.N., Baumberg, J.J., Russell, A.E., SERS at structured palladium and platinum surfaces, Journal of the American Chemical Society, 2007, 129(23), 7399–406.
2. Chung, A.J., Huh, Y.S., & Erickson, D., Large area flexible SERS active substrates using engineered nanostructures, Nanoscale, 2011, 3(7), 2903–8.
3. Ding, T., Sigle, D.O., Herrmann, L.O., Wolverson, D., Baumberg, J.J., Nanoimprint lithography of Al nanovoids for deep-UV SERS, ACS Applied Materials & Interfaces, 2014, 6(20), 17358–63.
4. Gómez, M., Lazzari, M., Reliable and cheap SERS active substrates, Materials Today, 2014, 17(7), pp. 358–359.
5. Haynes, C.L., McFarland, A.D., Van Duyne, R.P., Surface-Enhanced Raman Spectroscopy, Analytical Chemistry, 2005, 77(17), pp. 338A–346A.
6. Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I., Dasari, R.R., Feld, M.S., Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS), Physical Review Letters, 1997, 78(9), 1667–1670.
7. Li, D.-W., Zhai, W.-L., Li, Y.-T., Long, Y.-T., Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants, Microchimica Acta, 2013, 181(1-2), pp. 23–43.
8. Pettinger, B., Wetzel, H., Surface Enhanced Raman Scattering from Pyridine, Water, and Halide Ions on Au, Ag, and Cu Electrodes, Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1981, 85(6), pp. 473–481.
9. Ren, F., Campbell, J., Wang, X., Rorrer, G.L., Wang, A.X., Enhancing surface plasmon resonances of metallic nanoparticles by diatom biosilica, Optics Express, 2013, 21(13), 15308–13.
10. Sharma, B., Frontiera, R.R., Henry, A.-I., Ringe, E., Van Duyne, R.P., SERS: Materials, applications, and the future, Materials Today, 2012, 15(1-2), pp. 16–25.
11. Stenberg, H., Matikainen, A., Daniel, S., Nuutinen, T., Stenberg, P., Honkanen, S., Suvanto, M., Self-organized Polymer Wrinkles: A Lithography-free Pathway for Surface-enhanced Raman Scattering (SERS) Substrates, Macromolecular Materials and Engineering, 2015, 300(4), pp. 386–390.
12. Stosch, R., Yaghobian, F., Weimann, T., Brown, R.J. C., Milton, M. J.T., Güttler, B., Lithographical gap-size engineered nanoarrays for surface-enhanced Raman probing of biomarkers, Nanotechnology, 2011, 22(10), 105303.
13. Strehle, K.R., Cialla, D., Rösch, P., Henkel, T., Köhler, M., Popp, J., A reproducible surface-enhanced raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system, Analytical Chemistry, 2007, 79(4), 1542–7.
14. Tian, Z.-Q., Ren, B., Wu, D.-Y., Surface-Enhanced Raman Scattering: From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures, The Journal of Physical Chemistry B, 2015, 106(37), pp. 9463–9483.
15. Wang, A.X., Kong, X., Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering, Materials, 2015, 8(6), pp. 3024–3052.
16. Wang, Y., Ni, Z., Hu, H., Hao, Y., Wong, C.P., Yu, T., Shen, Z.X., Gold on graphene as a substrate for surface enhanced Raman scattering study, Applied Physics Letters, 2010, 97(16), 163111.
17. Weaver, M.J., Surface-enhanced Raman spectroscopy as a versatilein situ probe of chemisorption in catalytic electrochemical and gaseous environments, Journal of Raman Spectroscopy, 2002, 33(5), pp. 309–317.
18. Wustholz, K.L., Henry, A.-I., McMahon, J.M., Freeman, R.G., Valley, N., Piotti, M.E., … Van Duyne, R.P., Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy, Journal of the American Chemical Society, 2010, 132(31), 10903–10.
19. Yates, J.T., Madey, T.E., Vibrational Spectroscopy of Molecules on Surfaces, MA: Springer US, Boston 1987.
20. Zou, S., Williams, C.T., Chen, E. K.-Y., Weaver, M.J., Surface-Enhanced Raman Scattering as a Ubiquitous Vibrational Probe of Transition-Metal Interfaces: Benzene and Related Chemisorbates on Palladium and Rhodium in Aqueous Solution, The Journal of Physical Chemistry B, 1998, 102(45), pp. 9039–9049.