2/2017 pp. 16-22
Własności spektroskopowe kompleksów utworzonych przez tlenek grafenu i pochodną porfiryny z grupą arylową
Полный текст в pdf
Аннотация
Hybrid systems based on graphene oxide (GO) modified by organic molecules with the properties of donor and acceptor are very popular. The researches made in the last few years show that these structures have a really interesting photoelectrochemical properties. The ability of graphene oxide to effectively capture electrons, e.g. of porphyrins suggests the potential use of such materials in photovoltaics and molecular optoelectronics. This implies that further research of this group of molecular materials is very important from the point of view of their applications in diodes and transistors.
The goal of the research was to create new hybrid systems with donor-acceptor properties, consisting of graphite oxide and porphyrin 5,10,15,20-Tetrakis (4-hydroxyphenyl) -21H, 23H-porphine. The resulting hybrid structure has been characterized by spectroscopic investigation in a wide spectral range from ultraviolet to infrared.
Ключевые словаGraphene Oxide, porphyrin, hybrid system, photovoltaics, UV-Vis spectroscopy, infrared spectroscopy
Библиографический список1. Aydin, M., DFT and RAMAN spectroscopy of porphyrin derivatives: Tetraphenylporphine (TPP), Vibrational Spectroscopy, 2013, 68: pp. 141-152.
2. Bala Murali Krishna, M., Venkatramaiah, N., Venkatesanb, R., Narayana Rao, D., Synthesis and structural, spectroscopic and nonlinear optical measurements of graphene oxide and its composites with metal and metal free porphyrins, Journal of Materials Chemistry, 2012, 22, pp. 3059-3068.
3. Baskaran, D., Mays, J.W., Peter Zhang, X., Bratcher, M.S., Carbon Nanotubes with Covalently Linked Porphyrin Antennae: Photoinduced Electron Transfer, Journal of the American Chemical Society, 2005, 127, pp. 6916-6917.
4. Chen, D., Feng, H., Li, J., Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications, American Chemical Society, 2012, 13, pp. 6027−6053.
5. Choi, E.-Y., Han, T.H., Hong, J., Kim, J.E., Lee, S.H., Kim, H.W., Kim, S.O., Electronic Supplementary Information (ESI) for Noncolvalent Functionalization of Graphene with End-Functional Polymers, Journal of Materials Chemistry, 2010, 20, pp. 1907-1912.
6. Ciszewski, M., Badania procesu utleniania i interkalacji grafitu wybranymi pierwiastkami i ich związkami, Rozprawa doktorska, Politechnika Śląska, Gliwice, 2014.
7. Compton, O.C., Nguyen, S.T., Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials, Small, 2010, 6, pp. 711-723.
8. Dargiewicz-Nowicka, J., Radzki, S., Chemi- i biosensory optyczne wykorzystujące porfiryny, Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna, 2002, 8, pp. 119-131.
9. Fowler, P.W., Cedemans, A., Electron Deficiency of the Fullerenes, The Journal of Physical Chemistry, 1995, 99, pp. 508-510.
10. Grodecki, K., Spektroskopia ramanowska grafenu, Materiały Elektroniczne, 2013, 1, s.47-53.
11. Hummers, W.S., Jr., Offeman, R.E. 1958. Preparation of Graphitic Oxide, Journal of the American Chemical Society, 1958, 80(6), pp. 1339-1339.
12. Karousis, N., Sandanayaka, A.S.D., Hasobe, T., Economopoulos, S. P., Sarantopouloua, E., Tagmatarchis, N., Graphene oxide with covalently linked porphyrin antennae: Synthesis,characterization and photophysical properties, Journal of Materials Chemistry, 2011, 21(1), pp. 109-117.
13. Rosiak, N., Własności spektroskopowe kompleksów utworzonych przez tlenek grafenu i pochodne porfiryn z grupami arylowymi, Praca Dyplomowa Inżynierska, 2016.
14. Szabo, T., Berkesi, O., Forgo, P., Josepovits, K., Sanakis, Y., Petridis, D., Dekany, I., Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides, Chem. Mater., 2006, 18(11), pp. 2740-2749.
15. Trytek, M., Makarska, M., Polska, K., Radzki, S., Fiedurek, J., 2005. Porfiryny i ftalocyjaniny, Cz. I, Właściwości i niektóre zastosowania, Biotechnologia, 2005, 71(4), pp. 109-127.
16. Yamuna, R., Ramakrishnan, S., Dhara, K., Devi, R., Kothurkar, N.K., Kirubha, E., Palanisamy, P.K., Synthesis, characterization, and nonlinear optical properties of graphene oxide functionalized with tetra-amino porphyrin, Journal of Nanoparticle Research, 2013, 15, p. 1399.
17. Xu, Y., Liu, Z., Zhang, X., Wang, Y., Tian, J., Huang, Y., Ma, Y., Zhang, X., Chen, Y., A Graphene Hybrid Material Covalently Functionalized with Porphyrin: Synthesis and Optical Limiting Property, Adv. Mater., 2009, 21, pp. 1275–1279.
18. Xu, Y., Bai, H., Lu, G., Li, C., Shi, G., Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets, Journal of the American Chemical Society, 2008, 130(18), pp. 5856-5857.
19. Zheng, W., Shan, N., Yu, L., Wang, X., UV-visible, fluorescence and EPR properties of porphyrins and metalloporphyrins, Dyes and Pigments, 2008, 77(1), pp. 153-157.