backНазад к 2/2017
Technical Issues
2/2017 pp. 29-34

Wpływ glifosatu w postaci preparatu Roundup® na zbiorowiska mikrofitobentosu Zatoki Gdańskiej – nowe doniesienia


pdf Полный текст в pdf

Аннотация

The experiments testing the toxicity of glyphosate Roundup® formulation were conducted on the natural microphytobenthic communities collected from the Gulf of Gdansk. The toxic effect of glyphosate was assessed by changes in the biomass of microphytobenthos cells [mm3 ∙ ml-1], chlorophyll a concentration and reduction of efficiency of photosystem II. Negative impact of glyphosate on microphytobenthic communities, both at the cellular and population scale, was determined. Hence it can be concluded that certain concentrations of the herbicide Roundup (glyphosate – active substance), in the marine environment may adversely impact natural microphytobenthic communities, and in consequence also other elements of the ecosystem.

Ключевые слова

toxicological test, toxicity, herbicide, periphyton, chlorophyll a, biomass, photosystem II, Southern Baltic

Библиографический список

1. Blanck, H., Eriksson, K.M., Grönvall, F., Dahl, B., Guijarro, K.M., Birgersson, G., Kylin, H., A retrospective analysis of contamination and periphyton PICT patterns for the antifoulantirgarol 1051, around a small marina on the Swedish west coast, Marine Pollution Bulletin, 2009.

2. Campbell, D., Hurry, V., Clarke, A.K., Gustafsson, P., Öquist, G., Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation, Microbiology and molecular biology reviews, 1998, 62(3), pp. 667-683.

3. Campanella, L., Cubadda, F., Sammartino, M.P., Saoncella, A., An algal biosensor for the monitoring of water toxicity in estuarine environments, Water Research, 2000, 25, pp. 69–76.

4. Chobot, M., Brucka, M., Latała, A., The toxic effect of ionic liquid BMMICL in the rate of photosynthesis and chlorophyll A fluorescence in selected strains of batic microalgae in: Microorganisms in the enviroment and enviromental engineering from ecology to technology Olańczuk-Neyman K., Mazur-Marzec H. (red.), 2010.

5. Choi, C.J., Berges, J.A., Young, E.B., Rapid effects of diverse toxic water pollutants on chlorophyll a fluorescence: variable responses among freshwater microalgae, Water Research, 2012, 46(8), pp. 2615-2626.

6. Fargasova, A., Inhibitive effect of organotin compounds on the chlorophyll content of the green freshwater alga Scenedesmus quadricauda, Bulletin of environmental contamination and toxicology, 1996, 57, pp. 99–106.

7. Franz, J.E., Mao, M.K., Sikorski, J.A., Glyphosate A Unique Global Herbicyde. ACS Monograph 189. American Chemical Society, Washington CD, 1997.

8. Hernando, F., Royuela, M., Munoz-Rueda, A., Gonzalez-Murua, C., Effects of glyphosate on the greening process and photosynthetic metabolism in Chlorella pyrenoidosa, Journal of Plant Physiology, 1989, 134, pp. 26-31.

9. Jeffrey, S.T., Humphrey, G.F, New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton, Biochem Physiol Pflanz BPP,  1975.

10. Kudela, R., Roberts, A., Armstrong, M., Laboratory analyses of nutrient stress and toxin production in Pseudo-nitzschia spp. from Monterey Bay, California, Harmful algae, 2002, pp. 136-138.

11. Kruk-Dowgiałło, L., Brzeska, P., Opioła, R., Kuliński, M., Makroglony i okrytozalążkowe, W: Przewodniki metodyczne do badań terenowych i analiz laboratoryjnych fitoplanktonu, innej flory wodnej i makrobezkręgowców bentosowych w wodach przejściowych i przybrzeżnych, Inspekcja Ochrony Środowiska, Warszawa, 2010, s. 33-63.

12. Kwiatkowska, M., Jarosiewicz, P., Bukowska, B., Glifosat i jego preparaty – toksyczność, narażenie zawodowe i środowiskowe, Medycyna Pracy, 2013, 64, pp. 717-729.

13. Latała, A., Stepnowski, P., Nędzi, M., Mrozik, W., Marine toxity assessment of imidazolium ionic liquids: Acute effects on the Baltic algae Oocystissubmarina and Cyclotellameneghiniana, Aquatic toxicology, 2005, 73, pp. 91-98.

14. Latała, A., Nędzi, M., Stepnowski, P., Toxity of imidazolium and pyridinium based ionic liquids towards algae. Bacillaria pacillariapaxillifer (a microphytobenthic diatom) and Geitlerinema amphibium (a microphytobenthic blue green alga), Green Chemistry, 2009, 11, pp. 1371-1376.

15. Latała, A., Nędzi, M., Steponowski, P., Toxity of imidazolium and pyridinium based ionic liquids towards algae. Chlorella vulgaris, Oocystissubmarina (green algae) and Cyclotella meneghiniana, Skeletonema marinoi (diatoms), Green Chemistry, 2009, 11, pp. 574-579.

16. LISEC, Alga, growth inhibition test. Effect of MON 2139 on the growth of Selenastrum capricorutum. Monsanto unpublished study XX-89-093, Study Centre for Ecology and Forestry, Bokrijk, Belgium, 1989.

17. Maa, J., Wangc, S., Wangb, P., Mab, L., Chena, X., Xua, R., Toxicity assessment of 40 herbicides to the green alga Raphidocelis subcapitata, Ecotoxicology and Environmental Safety, 2006, 63, pp. 456–462.

18. Macedo, R.S., Lombard, A.T., Omachi, C.Y., Rörig, L.R., Effects of the herbicide bentazon on growth and photosystem II maximum quantum yield of the marine diatom Skeletonema costatum, Toxicology in Vitro, 2008, 22(3), pp. 716-722.

19. Malik, J., Barry, G., Kishore, G., The herbicide glyphosate, Biofactor, 1989, 2, pp. 7-25.

20. Matorin, D.N., Osipov, V.A., Seifullina, N.K., Venediktov, P.S., Rubin, A.B., Increased toxic effect of methylmercury on Chlorella vulgaris under high light and cold stress conditions, Microbiology, 2009, 78(3), pp. 321-327.

21. Marsalek, B., Rojickova, R., Stress factors enhancing production of algal exudates: A potential self-protective mechanism? Journal of Biosciences, 1996, C 51, pp. 646-650.

22. Modesto, A.K., Martinez, B.C.R., Roundup causes oxidative stress in liver and inhibits acetylocholinesterase in muscle and brain of the fish Prochilodus lineatus, Chemosphere, 2010, 78, pp. 294-299.

23. Peterson, H.G., Boutinb, C., Martinc, P.A., Freemarkb, K.E., Rueckera, N.J., Moodya, M.J., Aquatic phyto-toxicity of 23 pesticides applied at expected environmental concentrations, Aquatic Toxicology, 1994, Vol. 28, Issues 3–4, pp. 275–292.

24. Pieniążek, D., Bukowska, B., Duda, W., 2003. Glifosat – nietoksyczny pestycyd? Medycyna Pracy, 2003, 54, pp. 579- 583.

25. Roubeix, V., Mazzella, N., Schouler, L., Fauvelle, V., Morin, S., Coste, M., Delmas, F., Margoum, C., Variations of periphytic diatom sensitivity to the herbicide diuron and relation to species distribution in a contamination gradient: implications for biomonitoring, J. Environ. Monit., 2011, 13, 1768-1774.

26. Różański, L., Przemiany glifosatu, W: Kozłowska, D., Jakubczak, E., Mielcarek, M., [red.] Przemiany pestycydów w organizmach żywych i środowisku, Agra-Enviro Lab, Poznań, 1998, s. 311–313.

27. Sáenz, M.E., Di Marzio, W.D., Alberdi, J.L., del Carmen Tortorelli, M., Effects of technical grade and a commercial formulation of glyphosate on algal population growth, Bulletin of Environmental Contamination and Toxicology, 1997, 59, pp. 638-644.

28. Steinmann, H.H., Dickeduisberg, M., Theuvsen, L., Uses and benefits of glyphosate in German arable farming, Crop Protection-Guildford, 2012, 42, pp. 164–169.

29. Strickland, I.D.H., Parsons, T.R., A practical handbook of seawater analysis, Fisheries Research Board of Canada, Ottawa, 1972.

30. Sylwestrzak, Z., Zgrundo, A., Latała, A., Wpływ cieczy jonowej [BMIM]Cl na bałtycką okrzemkę Navicula ramosissma (C. Agardh) Cleve w eksperymencie laboratoryjnym na naturalnych zbiorowiskach mikrofitobentosu Zatoki Gdańskiej, Zagadnienia aktualnie poruszane przez młodych naukowców, cz.3, 2015.

31. Wong, P.K., Effects of 2,4-D, glyphosate and paraquat on growth, photosynthesis and chlorophyll a synthesis of Scenedesmus quadricauda Berb 614, Chemosphere, 2000, 41, pp. 177-182.